Seminar by Tianatahina Randrianasoa

"Hierarchical multi-feature image representation for segmentation" by Tianatahina Randrianasoa

at 2:00 PM

Room F021b
Building F
Laboratoire Hubert Curien
18 rue du Professeur Benoît Lauras
42000 Saint-Etienne

Seminar by Tianatahina Randrianasoa

Abstract

Segmentation is a crucial task in image analysis. Novel acquisition devices bring new images with higher resolutions, containing more heterogeneous objects. It becomes also easier to get many images of an area from different sources. This phenomenon is encountered in many domains (e.g. remote sensing, medical imaging) making difficult the use of classical image segmentation methods. Hierarchical segmentation approaches provide solutions to such issues. Particularly, the Binary Partition Tree (BPT) is a hierarchical data-structure modeling an image content at different scales. It is built in a mono-feature way (i.e. one image, one metric) by merging progressively similar connected regions. However, the metric has to be carefully thought by the user and the handling of several images is generally dealt with by gathering multiple information provided by various spectral bands into a single metric. Our first contribution is a generalized framework for the BPT construction in a multi-feature way. It relies on a strategy setting up a consensus between many metrics, allowing us to obtain a unified hierarchical segmentation space. Surprisingly, few works were devoted to the evaluation of hierarchical structures. Our second contribution is a framework for evaluating the quality of BPTs relying both on intrinsic and extrinsic quality analysis based on ground-truth examples. We also discuss about the use of this evaluation framework both for evaluating the quality of a given BPT and for determining which BPT should be built for a given application. Experiments using satellite images emphasize the relevance of the proposed frameworks in the context of image segmentation. 

This seminar will be held in french.