"Deep Image Retrieval: Learning global representations for image search" by Diane Larlus
The Thursday, September 8, 2016
at 10:00 AM
room F021b,
Building F,
Laboratoire Hubert Curien,
18 Rue Professeur Benoît Lauras,
42000 Saint-Etienne
Seminar by Diane Larlus, from XRCE (Xerox Research Centre Europe)
We propose a novel approach for instance-level image retrieval. It produces a global and compact fixed-length representation for each image by aggregating many region-wise descriptors. In contrast to previous works employing pre-trained deep networks as a black box to produce features, our method leverages a deep architecture trained for the specific task of image retrieval.
Our contribution is twofold: (i) we introduce a ranking framework to
learn convolution and projection weights that are used to build the
region features; and (ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor. We show that using clean training data is key to the success of our approach. To that aim, we leverage a large scale but noisy landmark dataset and develop an automatic cleaning approach. The proposed architecture produces a global image representation in a single forward pass. Our approach significantly outperforms previous approaches based on global descriptors on standard datasets. It even surpasses most prior works based on costly local descriptor indexing and spatial verification.
https://arxiv.org/abs/1604.01325